First principles based mean field model for oxygen reduction reaction.
نویسندگان
چکیده
A first principles-based mean field model was developed for the oxygen reduction reaction (ORR) taking account of the coverage- and material-dependent reversible potentials of the elementary steps. This model was applied to the simulation of single crystal surfaces of Pt, Pt alloy and Pt core-shell catalysts under Ar and O(2) atmospheres. The results are consistent with those shown by past experimental and theoretical studies on surface coverages under Ar atmosphere, the shape of the current-voltage curve for the ORR on Pt(111) and the material-dependence of the ORR activity. This model suggests that the oxygen associative pathway including HO(2)(ads) formation is the main pathway on Pt(111), and that the rate determining step (RDS) is the removal step of O(ads) on Pt(111). This RDS is accelerated on several highly active Pt alloys and core-shell surfaces, and this acceleration decreases the reaction intermediate O(ads). The increase in the partial pressure of O(2)(g) increases the surface coverage with O(ads) and OH(ads), and this coverage increase reduces the apparent reaction order with respect to the partial pressure to less than unity. This model shows details on how the reaction pathway, RDS, surface coverages, Tafel slope, reaction order and material-dependent activity are interrelated.
منابع مشابه
Metal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction
Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...
متن کاملOxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling.
Based on first principles density functional theory calculations we explored energetics of oxygen reduction reaction over pristine and nitrogen-doped graphene with different amounts of nitrogen doping. The process of oxygen reduction requires one more step than the same reaction catalyzed by metals. Results of calculations evidence that for the case of light doped graphene (about 4% of nitrogen...
متن کاملChecking the Sensitivity of Solute Advection- Dispersion Model to Reaction Coefficients and River Hydraulic Properties in the Process of Dissolved Oxygen Simulation
Nowadays, environmental pollutions especially water pollution is increasingly developing. One of the problems of entering the pollutants to rivers is reduction in the concentration of river dissolved oxygen. In order to manage the water resources, amount of dissolved oxygen should be predicted. This study presents a novel equation for simulating the concentration of river dissolved oxygen by ad...
متن کاملTheoretical analysis of the effect of particle size and support on the kinetics of oxygen reduction reaction on platinum nanoparticles.
We perform a first-principles based computational analysis of the effect of particle size and support material on the electrocatalytic activity of platinum nanoparticles. Using a mechanism for oxygen reduction that accounts for electric field effects and stabilization from the water layer on the (111) and (100) facets, we show that the model used agrees well with linear sweep voltammetry and ro...
متن کاملPt Monolayer Electrocatalyst for Oxygen Reduction Reaction on Pd-Cu Alloy: First-Principles Investigation
First principles approach is used to examine geometric and electronic structure of the catalyst concept aimed to improve activity and utilization of precious Pt metal for oxygen reduction reaction in fuel cells. The Pt monolayers on Pd skin and Pd1−xCux inner core for various compositions x were examined by building the appropriate models starting from Pd-Cu solid solution. We provided a detail...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 47 شماره
صفحات -
تاریخ انتشار 2011